Ratio

a comparison of any two quantities

\triangle to \bigcirc	4 to 3
\triangle to all of set A	$\frac{4}{7}$
O to \bigcirc	$3: 5$
set B to set A	9 to 7 or $9: 7$

Fraction Multiplication

How much is $\frac{3}{8}$ of $\frac{2}{3}$?

How many halves are in three-fourths?

There are $1 \frac{1}{2}$ halves in three-fourths.

$$
\frac{3}{4} \div \frac{1}{2}=1 \frac{1}{2}
$$

Fraction Division
 $$
\frac{3}{4} \div \frac{1}{2}
$$

distance a number is from zero

Fraction Division

$$
\frac{3}{4} \div \frac{1}{2}
$$

How many halves are in three-fourths?

three-fourths

one-half

1 "whole" one-half

There are $1 \frac{1}{2}$ halves in three-fourths.

$$
\frac{3}{4} \div \frac{1}{2}=1 \frac{1}{2}
$$

Equivalent Relationships
 s

Exponential Form

Fraction: $\frac{2}{5}$
Decimal: 0.4

Percent: 40\%

$$
\begin{gathered}
\text { Per hundred } \\
56 \%=\frac{56}{100}=\frac{14}{25}=0.56
\end{gathered}
$$

Percent

Perfect Squares $0^{2}=0 \cdot 0=0$
$1^{2}=1 \cdot 1=1$
$2^{2}=2 \cdot 2=4$
$3^{2}=3 \cdot 3=9$
$4^{2}=4 \cdot 4=16$
$5^{2}=5 \cdot 5=25$
$\sqrt{16}=\underset{\text { perfect square }}{\sqrt{4 \cdot 4}}=4$

Powers of Ten

	Meaning	Value
10^{4}	$10 \cdot 10 \cdot 10 \cdot 10$	10,000
10^{3}	$10 \cdot 10 \cdot 10$	1000
10^{2}	$10 \cdot 10$	100
10^{1}	10	10
10^{0}	1	1
10^{-1}	$\frac{1}{10}$	0.1
10^{-2}	$\frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{100}=0.01$
10^{-3}	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{1000}=0.001$
10^{-4}	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{10,000}=0.0001$

Comparing Integers

$-5<1$ or $1>-5$
$-4>-5$ or $-5<-4$

Order of
 Operations

Grouping Symbols

Exponents

Multiplication ${ }_{\}}^{\text {Left }}$ Division

Square Root

radical symbol

$$
\begin{gathered}
\sqrt{36}=6 \\
\sqrt{36}=\sqrt{6 \cdot 6}=\sqrt{6^{2}}=6
\end{gathered}
$$

Squaring a number and taking a square root are inverse operations.

$$
\begin{gathered}
-\sqrt{36}=-6 \\
(-6)^{2}=-6 \cdot-6=36
\end{gathered}
$$

Square Root

between $\sqrt{9}$ and $\sqrt{16}$

Ballpark
 Comparisons Length

1 inch or
2.5 centimeter

1 yard < 1 meter

Ballpark Comparisons Weight/Mass

$\approx 11 \mathrm{ram}$
\approx

${ }^{\sim}{ }^{\mathrm{kg}}$

Ballpark Comparisons Volume

Ballpark
Comparisons
Temperature

	Fahrenheit	Celsius
Water freezes	$32^{\circ} \mathrm{F}$	$0^{\circ} \mathrm{C}$
Water boils	$212^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{C}$
Body	$98^{\circ} \mathrm{F}$	$37^{\circ} \mathrm{C}$
Temperature	Room Temperature	$70^{\circ} \mathrm{F}$

Perimeter

the measure of the distance around a figure

$$
P=a+b+c+d
$$

$P=r+s+t+u$

$P=e+f+g$

Area
the number of square units needed to cover a surface or figure

Area $=12$ Square Units

Circumference

$\pi \approx 3.14159 \ldots$

$\pi=\frac{\text { circumference }}{\text { diameter }}$

Area of a Circle

$A=\pi r^{2}$

$C=2 \pi r$
$\mathrm{C}=$ perimeter of a circle

Volume of a Prism

Volume $=$ length x width x height

$$
V=I w h
$$

measured in cubic units

Surface Area

Surface Area (S.A.) = sum of areas of faces

Face and Base

Vertex

vertex

Congruent Figures

have exactly the same shape and size

Triangles

Quadrilaterals
 Relationships

Parallelogram

- opposite angles are congruent
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Rhombus

- opposite angles are congruent
- 2 pairs of parallel sides
- 4 congruent sides

Square

- 4 right angles
- 2 pairs of parallel sides
- 4 congruent sides

Rectangle

- 4 right angles
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Trapezoid

- may have zero or two right angles
- exactly one pair of parallel sides
- may have one pair of congruent sides

Kite

- one pair of opposite congruent angles
- 2 pairs of adjacent congruent sides

Coordinate Plane

ordered pair (x, y)

Three Dimensional Models

Probability

Probability of Independent Events

What is the probability of landing on green on the first spin and then landing on yellow on the second spin?

Probability of Dependent Events

What is the probability of getting a red jelly bean on first pick and then without replacing it, getting a green jelly bean on the second pick?

$P($ red $) \cdot P($ green after red $)=$

$$
\frac{4}{12} \cdot \frac{2}{11}=\frac{8}{132}=\frac{2}{33}
$$

Median

a measure of central tendency
$6,7,8,9,9$

$8=$ median

$5,6, \underbrace{9}_{\substack{\uparrow \\ 8.5 \\ 8 \\ \text { median }}}, 11,12$

$$
\frac{2+3+4+7}{4}=\frac{16}{4}=(4
$$

Mode

a measure of central tendency

Data Sets	Mode
$2,3,3,3,5,5,9,10$	3
$\begin{gathered} 5.2,5.4,5.5,5.6 \\ 5.8,5.9,6.0 \end{gathered}$	none
$\begin{gathered} 1,1,2,5,6,7,7,9 \\ 11,12 \end{gathered}$	1, 7

Bar Graph

Range

Data set
$2 \frac{1}{2}, 3,3 \frac{3}{4}, 3 \frac{7}{8}, 5,5 \frac{1}{2}, 9 \frac{1}{6}, 100_{5}^{4}, 15 \frac{1}{2}, 20$
$20-2 \frac{1}{2}=17 \frac{1}{2}$
Range $=17 \frac{1}{2}$

Line Graph

Stem-and-Leaf Plot

Circle Graph

Math Test Scores
56, 65, 98, 82, 64, 71, 78, 86, 95, 91,
$59,70,80,92,76,82,85,91,92,73$

STEM	LEAF
5	69
6	45
7	01368
8	02256
9	112258

Key: $5 \mid 6$ means 56

Histogram

Exam Scores of Students

Favorite Ice Cream

Scatterplot

illustrates the relationship between two sets of data.

Arithmetic Sequences

What is the next term?

Additive Identity Property

$$
0.3+0=0.3
$$

$$
0+(-7)=-7
$$

$$
\frac{4}{7}=0+\frac{4}{7}
$$

$$
w+0=w
$$

Geometric Sequences

What is the next term?

Additive Inverse Property

$1.4+(-1.4)=0$
$(-9)+9=0$
$0=\frac{4}{7}+\left(-\frac{4}{7}\right)$
$x+(-x)=0$

Associative Property

Addition:

$$
\begin{aligned}
(4+2)+8 & =4+(2+8) \\
x+\left(3 x+\frac{1}{2}\right) & =(x+3 x)+\frac{1}{2}
\end{aligned}
$$

Multiplication:

$$
\begin{gathered}
(3 \cdot 1.5) \cdot 6=3 \cdot(1.5 \cdot 6) \\
2(3 x)=(2 \cdot 3) x
\end{gathered}
$$

Commutative Property

Addition:

$$
\begin{gathered}
2.76+3=3+2.76 \\
(a+5)+7=(5+a)+7
\end{gathered}
$$

Multiplication:

$$
\begin{gathered}
-8 \cdot \frac{2}{3}=\frac{2}{3} \cdot(-8) \\
y \cdot 9=9 y
\end{gathered}
$$

Multiplicative
Identity Property

$$
\begin{gathered}
9 \cdot 1=9 \\
1 \cdot(-10)=-10 \\
\frac{3}{2}=\frac{3}{2} \cdot 1
\end{gathered}
$$

Multiplicative
Inverse Property

$$
\begin{gathered}
2 \cdot \frac{1}{2}=1 \\
1=\left(-\frac{1}{9}\right) \cdot-9 \\
x \cdot \frac{1}{x}=1(x \neq 0)
\end{gathered}
$$ Inverse Property

Multiplicative
Property of Zero

$$
\begin{gathered}
0=8 \cdot 0 \\
0(-13)=0 \\
\frac{5}{6} x \cdot 0=0
\end{gathered}
$$

$3(y+3.9)-\frac{8}{9}$

Equation

A mathematical sentence stating that two expressions are equal.

$$
\begin{gathered}
2.76+3 \fallingdotseq 3+2.76 \\
3 x \fallingdotseq 6.9
\end{gathered}
$$

Expression

X
$-\sqrt{26}$
$2 x+3^{4}$

$$
2(y+3)
$$

Variable

$$
3+x=2.08
$$

$$
A=\pi r^{2}
$$

Coefficient

$$
\begin{gathered}
(-4)+2 x \\
-7 y^{2} \\
\frac{2}{3} a b-\frac{1}{2}
\end{gathered}
$$

Constant

Term

$$
\begin{aligned}
& \underbrace{2 y}_{\underbrace{3 x}_{3 \text { terms }}+2 y-8} \underbrace{-5 x^{2}}_{\underbrace{8}_{2 \text { terms }}}+(-2 x) \\
& \underbrace{-2 x}_{\underbrace{2}_{1 \text { term }} a b}
\end{aligned}
$$

(7) $-2 y+x-6 x^{2}$

$$
3(x+3.9)+\left(\frac{8}{9}\right)
$$

Inequality

