Ratio

a comparison of any two quantities

▲ to ○	4 to 3
▲ to all of set A	4 7
O to	3:5
set B to set A	9 to 7 or 9:7

Absolute Value

$$|5| = 5$$
 $|-5| = 5$

distance a number is from zero

Fraction Multiplication

How much is $\frac{3}{8}$ of $\frac{2}{3}$?

$$\frac{3}{8} \times \frac{2}{3} = \frac{6}{24} = \frac{1}{4}$$

Fraction Division

$$\frac{3}{4} \div \frac{1}{2}$$

How many halves are in three-fourths?

There are $1\frac{1}{2}$ halves in three-fourths.

$$\frac{3}{4} \div \frac{1}{2} = 1\frac{1}{2}$$

Fraction Division

$$\frac{3}{4} \div \frac{1}{2}$$

How many halves are in three-fourths?

There are $1\frac{1}{2}$ halves in three-fourths.

$$\frac{3}{4} \div \frac{1}{2} = 1\frac{1}{2}$$

Percent

Per hundred

$$56\% = \frac{56}{100} = \frac{14}{25} = 0.56$$

Equivalent Relationships

Fraction: $\frac{2}{5}$

Decimal: 0.4

Percent: 40%

Exponential Form

Perfect Squares

$$0^{2} = 0 \cdot 0 = 0$$
 $1^{2} = 1 \cdot 1 = 1$
 $2^{2} = 2 \cdot 2 = 4$
 $3^{2} = 3 \cdot 3 = 9$
 $4^{2} = 4 \cdot 4 = 16$
 $5^{2} = 5 \cdot 5 = 25$

$$\sqrt{16} = \sqrt{4 \cdot 4} = 4$$
perfect square

Virginia Department of Education ©2012 Middle

Middle School Mathematics Vocabulary Cards

Page 9

Powers of Ten

	Meaning	Value
10 ⁴	10.10.10.10	10,000
10 ³	10.10.10	1000
10 ²	10.10	100
10 ¹	10	10
10 ⁰	1	1
10 ⁻¹	1 10	0.1
10 ⁻²	$\frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{100} = 0.01$
10 ⁻³	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{1000} = 0.001$
10 ⁻⁴	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{10,000} = 0.0001$

Virginia Department of Education ©201

Middle School Mathematics Vocabulary Cards

Page 10

Comparing Integers

$$-5 < 1 \text{ or } 1 > -5$$

$$-4 > -5$$
 or $-5 < -4$

Order of Operations

Grouping Symbols

Exponents

Multiplication
Division

Addition
Subtraction

Left to right

Square Root

Square Root

radical symbol

$$\sqrt{36} = 6$$

$$\sqrt{36} = \sqrt{6.6} = \sqrt{6^2} = 6$$

Squaring a number and taking a square root are inverse operations.

$$-\sqrt{36} = -6$$
$$(-6)^2 = -6 \cdot -6 = 36$$

between $\sqrt{9}$ and $\sqrt{16}$

Ballpark Comparisons Length

1 inch or 2.5 centimeter

1 yard < 1 meter

Ballpark Comparisons Weight/Mass

Ballpark Comparisons Volume

Virginia Department of Education ©2012

Middle School Mathematics Vocabulary Cards

Page 32

Ballpark Comparisons Temperature

	Fahrenheit	Celsius
Water freezes	32°F	0°C
Water boils	212°F	100°C
Body Temperature	98°F	37°C
Room Temperature	70°F	20°C

Virginia Department of Education ©201

Middle School Mathematics Vocabulary Cards

Page 33

Perimeter

the measure of the distance around a figure

Area

the number of square units needed to cover a surface or figure

Area = 12 Square Units

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards Page 34 Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards F

Pi

$\pi \approx 3.14159...$

$$\pi = \frac{\text{circumference}}{\text{diameter}}$$

Virginia Department of Education ©2012

Middle School Mathematics Vocabulary Cards

Page 3

Circumference

 $C = 2\pi r$ C = perimeter of a circle

Virginia Department of Education ©201

Middle School Mathematics Vocabulary Cards

Page 37

Area of a Circle

$$A = \pi r^2$$

Volume of a Prism

Volume = length x width x height

V = Iwh

measured in cubic units

Surface Area

Surface Area (S.A.) = sum of areas of faces

Vertex

Face and Base

Congruent Figures

have exactly the same shape and size

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Page 42

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Triangles

Quadrilaterals

Quadrilaterals Relationships

Parallelogram

- opposite angles are congruent
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Rhombus

- opposite angles are congruent
- 2 pairs of parallel sides
- 4 congruent sides

Rectangle

- 4 right angles
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Square

- 4 right angles
- 2 pairs of parallel sides
- 4 congruent sides

Trapezoid

- may have zero or two right angles
- exactly one pair of parallel sides
- may have one pair of congruent sides

- one pair of opposite congruent angles
- 2 pairs of adjacent congruent sides

Three Dimensional Models

Middle School Mathematics Vocabulary Cards

Coordinate Plane

ordered pair (x,y)

Probability

$$P(A) = \frac{3}{7}$$
unlikely likely
$$0$$

$$\frac{3}{7} \frac{1}{2}$$
impossible
$$\frac{1}{7}$$
certain

Probability of Independent Events

What is the probability of landing on green on the first spin and then landing on yellow on the second spin?

P(green and yellow) =
P(green) • P(yellow) =
$$\frac{3}{8} \cdot \frac{1}{4} = \frac{3}{32}$$

Virginia Department of Education ©2012 Middle School Mathematics V

Page 1

Probability of Dependent Events

What is the probability of getting a red jelly bean on first pick and then without replacing it, getting a green jelly bean on the second pick?

P(red) • P(green after red) =

$$\frac{4}{12} \cdot \frac{2}{11} = \frac{8}{132} = \frac{2}{33}$$

Virginia Department of Education ©201

Middle School Mathematics Vocabulary Cards

Page 75

Mean

a measure of central tendency

2, 3, 4, 7

Balance Point

Numerical Average

$$\frac{2+3+4+7}{4} = \frac{16}{4} = 4$$

Median

a measure of central tendency

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Page 7

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Mode

a measure of central tendency

Data Sets	Mode
2, 3 , 3 , 3 , 5, 5, 9, 10	3
5.2, 5.4, 5.5, 5.6, 5.8, 5.9, 6.0	none
1, 1, 2, 5, 6, 7 , 7 , 9, 11, 12	1, 7
/ bimodal	

Range

Data set $2\frac{1}{2}$, 3, $3\frac{3}{4}$, $3\frac{7}{8}$, 5, $5\frac{1}{2}$, $9\frac{1}{6}$, $10\frac{4}{5}$, $15\frac{1}{2}$, 20

$$20 - 2\frac{1}{2} = 17\frac{1}{2}$$

Range =
$$17\frac{1}{2}$$

Bar Graph

Pounds of Newspapers Recycled by **Lexington Middle School Students** Spuno₁₅₀ 100 Mrs. Brown Mr. Jones Mr. Smith Ms. Scott Class

Line Graph

Stem-and-Leaf Plot

Math Test Scores 56, 65, 98, 82, 64, 71, 78, 86, 95, 91, 59, 70, 80, 92, 76, 82, 85, 91, 92, 73

STEM	LEAF
5	6 9
6	4 5
7	01368
8	02256
9	112258

Key: 5|6 means 56

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Page 86

Circle Graph

Favorite Ice Cream

Histogram

Scatterplot

illustrates the relationship between two sets of data.

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Arithmetic Sequences

What is the next term?

4, 10, 16, 22 ...

common difference

$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}$

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards Pag

Geometric Sequences

What is the next term?

Virginia Department of Education ©201:

Middle School Mathematics Vocabulary Cards

Page 93

Additive Identity Property

$$0.3 + 0 = 0.3$$

$$0 + (-7) = -7$$

$$\frac{4}{7} = 0 + \frac{4}{7}$$

$$W + 0 = W$$

Additive Inverse Property

$$1.4 + (-1.4) = 0$$

$$(-9) + 9 = 0$$

$$0 = \frac{4}{7} + \left(-\frac{4}{7}\right)$$

$$x + (-x) = 0$$

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards Page 94 Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Associative Property

Addition:

$$(4+2)+8=4+(2+8)$$

$$x + (3x + \frac{1}{2}) = (x + 3x) + \frac{1}{2}$$

Multiplication:

$$(3 \cdot 1.5) \cdot 6 = 3 \cdot (1.5 \cdot 6)$$

 $2(3x) = (2 \cdot 3)x$

Commutative Property

Addition:

$$2.76 + 3 = 3 + 2.76$$

$$(a + 5) + 7 = (5 + a) + 7$$

Multiplication:

$$-8 \cdot \frac{2}{3} = \frac{2}{3} \cdot (-8)$$

$$y \cdot 9 = 9y$$

Multiplicative **Identity Property**

$$9 \cdot 1 = 9$$

$$1 \cdot (-10) = -10$$

$$\frac{3}{2} = \frac{3}{2} \cdot 1$$

Multiplicative Inverse Property

$$2 \cdot \frac{1}{2} = 1$$

$$1 = (-\frac{1}{9})^{-} -9$$

$$x \cdot \frac{1}{x} = 1 \ (x \neq 0)$$

Multiplicative Property of Zero

$$0 = 8 \cdot 0$$

$$0(-13) = 0$$

$$\frac{5}{6} x \cdot \mathbf{0} = \mathbf{0}$$

Equation

A mathematical sentence stating that two expressions are equal.

$$2.76 + 3 = 3 + 2.76$$

 $3x = 6.9$

Expression

X

$$-\sqrt{26}$$

$$2x + 3^4$$

$$3(y + 3.9) - \frac{8}{9}$$

Variable

$$2(y + 3)$$

$$3 + x = 2.08$$

$$A = \pi r^2$$

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards Page 103

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Coefficient

$$(-4) + 2x$$

$$-7y^2$$

$$\frac{2}{3}ab-\frac{1}{2}$$

Term

$$3x + 2y - 8$$
3 terms

$$-5x^2 + (-2x)$$

2 terms

$$\frac{2}{3}ab$$
1 term

Constant

$$4x - 12$$

$$7 - 2y + x - 6x^2$$

$$3(x+3.9)+\frac{8}{9}$$

Inequality

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards

Page 107

Virginia Department of Education ©2012 Middle School Mathematics Vocabulary Cards